-4k^2-8k-3=-8k+3-5k^2

Simple and best practice solution for -4k^2-8k-3=-8k+3-5k^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4k^2-8k-3=-8k+3-5k^2 equation:



-4k^2-8k-3=-8k+3-5k^2
We move all terms to the left:
-4k^2-8k-3-(-8k+3-5k^2)=0
We get rid of parentheses
-4k^2+5k^2+8k-8k-3-3=0
We add all the numbers together, and all the variables
k^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $

See similar equations:

| 2g+12=–4 | | -7=6/w | | -80=10n | | Y-8+2(y)=10 | | m(3m-4m+5)=6 | | 2+4x+13=3(−x−2) | | 4x-2=55=107 | | (x-2)/2=0.18 | | 4x-2=107=55 | | 3x-20=5x-2x | | -12z-16=2(-6z-6) | | 5x-2x=3x-20 | | 250-150x=1,500 | | 107=55=(4-2x) | | x3+5x-26=0 | | 5(6x-6)+3=3 | | −8y−7+y=−5(y+3) | | w-52=8 | | 2(4z-1)=3(1z+2) | | x2=916 | | 7x-44=75=63 | | 4x(x+8)=15 | | F2-3f+3=0 | | X+y=39X–y=15 | | 76=2x+14 | | 125=w-100 | | 48=2x-1 | | −9=−11+8x​ | | {20}{3}=2(w+{2}{3}) | | 2x-14+2x-17=17 | | 12x+39=-1x | | 5z+1=-0.57z+0.57 |

Equations solver categories